The Merrifield的固相肽合成始于1960年代, 在1980年代中期在多種平行固相合成中得到復(fù)興. Geysen 發(fā)展了一種利用多針 和標(biāo)準(zhǔn)96孔圓片一次合成96種肽的方法, Houghten 引入了茶袋法. 1990年代早期, 提出了單珠單化合物概念, 合成了一個高度混合文庫結(jié)合了子文庫和重疊合法(deconvolution). 另一方面, 被用作半導(dǎo)體工業(yè)中的標(biāo)準(zhǔn)方法的照相平版技術(shù) 也被應(yīng)用于文庫合成.
多針法
96個聚乙烯針排列于標(biāo)準(zhǔn)96孔圓片上, 每個針的末端賦以反應(yīng)用的官能團(tuán). 每個孔包含活化的氨基酸溶液, 針被浸于溶液中以進(jìn)行肽偶聯(lián)反應(yīng); 每個反應(yīng)孔將產(chǎn)生不同的肽產(chǎn)物. 這種方法大約能產(chǎn)生0.05-2 mmol的肽.
微量滴定圓片多針
茶袋法
帶有小孔的聚乙烯袋, 與實(shí)際的茶袋非常相似, 里面填充樹脂珠且每個袋子置于不同的反應(yīng)器皿中以完成氨基酸偶聯(lián)反應(yīng). 反應(yīng)后, 收集所有的袋子一齊做去保護(hù)基反應(yīng)并洗去樹脂珠以節(jié)省時間. 在本方法中, 袋子起到了濾紙的作用并防止了不同反應(yīng)間樹脂珠的混和, 而且通過標(biāo)記袋子, 合成的肽結(jié)構(gòu)可被識別. 大約有500mmol的100種不同的肽可用此法合成, 這是平行合成的實(shí)際方法證明, 盡管合成的肽種類不是很多.
重疊合法(Deconvolution)
有幾種不同的方法可被用于重疊合法 , 一個例子如下. 如果用20種氨基酸制得5-mer的肽文庫(全部可能組合數(shù)為205 = 3,200,000), 第一個氨基酸以及其余4個都將會從20種氨基酸中隨機(jī)抽取. 在這些20套肽混合物(每個包含204 = 160,000 種肽)中, 最具活性的混合物將通過篩選而得到. 在第二輪中, 肽的1位將賦為第一輪篩選出的最具活性的, 2位將從20種氨基酸中選擇, 其余3個位置隨機(jī)選擇. 這些20肽混合物將包含203 = 8,000 種肽, 第二輪篩選將決定2位最具活性的氨基酸. 按照類似的過程, 重復(fù)3遍后找到最有活性的分子. 這種方法將使篩選100個反應(yīng)(20 每輪 x 5 輪)制得的300萬余種化合物成為可能. 盡管這種方法對于液相及固相化學(xué)都可行, 因?yàn)樽詣踊鶐淼囊滋幨沟霉滔嚯暮铣杉皬妮d體上切割下來然后篩選的技術(shù)更為廣泛應(yīng)用. 由于溶液中的分子是自由的, 可供選擇的篩選方式較固相載體束縛的肽更為寬泛. 雖然如此, 篩選的最初階段所給出的混合物(例如160,000)中含有太多種分子, 因而活性組分的濃度太低而不易與噪聲相區(qū)別. 一個改進(jìn)的方法是固定以20種氨基酸固定一個位置并令其他4個位置隨機(jī)然后篩選; 所有的子文庫將包含160,000種肽混合物. 經(jīng)過5輪篩選, 給出最優(yōu)的選擇.
隨機(jī)合成肽混合物的一個重要方面是在一個位置上引入相同量的20種氨基酸. 如果不是這樣, 產(chǎn)生的文庫的相對量將會隨不同氨基酸的反應(yīng)活性而改變, 最后干擾正常的篩選. 依靠側(cè)鏈的性質(zhì), 氨基酸的反應(yīng)活性可被單獨(dú)測量, 而且一個互惠(對反應(yīng)活性而言)量的氨基酸應(yīng)該被混合以產(chǎn)生等量的混合物.
照相平版
照相平版術(shù)包括光敏保護(hù)基和石版印刷術(shù), 在半導(dǎo)體工業(yè)中是一個標(biāo)準(zhǔn)的工具, 在平行合成中有所應(yīng)用. 在這個方法中, 每個文庫化合物被放置在一枚芯片上, 而且反應(yīng)歷程(因此最后的產(chǎn)品結(jié)構(gòu))將會依空間的地址識別. 隨著半導(dǎo)體技術(shù)的進(jìn)步, 清晰度令人驚異的增加從而在一枚小芯片上提供數(shù)百乃至數(shù)千化合物. 現(xiàn)在, 芯片技術(shù)被用于肽或核苷低聚物的合成, 后者發(fā)展以至進(jìn)入DNA芯片和基因芯片.
這里舉肽合成為例. 芯片的玻璃表面用化學(xué)方法修飾而產(chǎn)生用光敏基團(tuán)保護(hù)的氨基. 預(yù)先設(shè)計(jì)的掩膜覆蓋到芯片上, 然后使光射到需要反應(yīng)的位置上而除掉保護(hù)基從而暴露出氨基. 整個芯片置于反應(yīng)釜中然后吸附氨基酸A到暴露的區(qū)域. 使用不同的掩膜, 暴露光到第二區(qū)域, 使氨基酸B在那里偶聯(lián). 如被引入的氨基酸也被光敏基團(tuán)保護(hù), 在完成第一層合成后, 上層合成可被重復(fù)以達(dá)到目標(biāo)大小.
螢光標(biāo)記的抗體或受體將會被加在這枚合成物質(zhì)芯片表面, 然后依據(jù)鍵能, 得到螢光圖案. 讀取螢光位置的芯片地址將會識別出標(biāo)記蛋白的鍵合雙方的結(jié)構(gòu). 分辨率越高, 識別螢光信號并比較強(qiáng)度就越需要自動化完成.