將特定的外源基因構建在植物表達載體中并轉(zhuǎn)入受體植物,并不是植物遺傳轉(zhuǎn)化的最終目的。理想的轉(zhuǎn)基因植物往往需要外源基因在特定部位和特定時間內(nèi)高水平表達,產(chǎn)生人們期望的表型性狀。然而,近二十年的發(fā)展歷史卻表明,外源基因在受體植物內(nèi)往往會出現(xiàn)表達效率低、表達產(chǎn)物不穩(wěn)定甚至基因失活或沉默等不良現(xiàn)象,導致轉(zhuǎn)基因植物無法投入實際應用。另外,轉(zhuǎn)基因植物的安全性問題已在許多國家引起人們的關注,例如,轉(zhuǎn)基因有可能隨花粉擴散,抗生素篩選標記基因有可能使臨床上的某些抗生素失去作用等等。以上問題的出現(xiàn)使得植物基因工程這一高新技術正處于一種前所未有的困擾時期。針對這些問題,近幾年人們對植物轉(zhuǎn)基因技術進行了多方面的探索和改進,植物表達載體的改進和優(yōu)化就是其中最重要的一項內(nèi)容,本文就已經(jīng)取得的進展進行綜述。
1 啟動子的選用和改造
外源基因表達量不足往往是得不到理想的轉(zhuǎn)基因植物的重要原因。由于啟動子在決定基因表達方面起關鍵作用,因此,選擇合適的植物啟動子和改進其活性是增強外源基因表達首先要考慮的問題。
目前在植物表達載體中廣泛應用的啟動子是組成型啟動子,例如,絕大多數(shù)雙子葉轉(zhuǎn)基因植物均使用CaMV35S啟動子,單子葉轉(zhuǎn)基因植物主要使用來自玉米的Ubiquitin啟動子和來自水稻的Actinl啟動子。在這些組成型表達啟動子的控制下,外源基因在轉(zhuǎn)基因植物的所有部位和所有的發(fā)育階段都會表達。然而,外源基因在受體植物內(nèi)持續(xù)、高效的表達不但造成浪費,往往還會引起植物的形態(tài)發(fā)生改變,影響植物的生長發(fā)育。為了使外源基因在植物體內(nèi)有效發(fā)揮作用,同時又可減少對植物的不利影響,目前人們對特異表達啟動子的研究和應用越來越重視。已發(fā)現(xiàn)的特異性啟動子主要包括器官特異性啟動子和誘導特異性啟動子。例如,種子特異性啟動子、果實特異性啟動子、葉肉細胞特異性啟動子、根特異性啟動子、損傷誘導特異性啟動子、化學誘導特異性啟動子、光誘導特異性啟動子、熱激誘導特異性啟動子等。這些特異性啟動子的克隆和應用為在植物中特異性地表達外源基因奠定了基礎。例如,瑞士CIBA-GEIGY公司使用PR-IA啟動子控制轉(zhuǎn)基因煙草中Bt毒蛋白基因的表達,由于該啟動子可受水楊酸及其衍生物誘導,通過噴酒廉價、無公害的化學物質(zhì),誘導抗蟲基因在蟲害重發(fā)生季節(jié)表達,顯然是一個十分有效的途徑。
在植物轉(zhuǎn)基因研究中,使用天然的啟動子往往不能取得令人滿意的結(jié)果,尤其是在進行特異表達和誘導表達時,表達水平大多不夠理想。對現(xiàn)有啟動子進行改造,構建復合式啟動子將是十分重要的途徑。例如,Ni等人將章魚堿合成酶基因啟動子的轉(zhuǎn)錄激活區(qū)與甘露堿合成酶基因啟動子構成了復合啟動子,GUS表達結(jié)果表示:改造后的啟動子活性比35S啟動子明顯提高。吳瑞等人將操作誘導型的PI-II基因啟動子與水稻Actinl基因內(nèi)含子1進行組合,新型啟動子的表達活性提高了近10倍(專利)。在植物基因工程研究中,這些人工組建的啟動子發(fā)揮了重要作用。
2 增強翻譯效率
為了增強外源基因的翻譯效率,構建載體時一般要對基因進行修飾,主要考慮三方面內(nèi)容:
2.1添加5‵-3‵-非翻譯序列
許多實驗已經(jīng)發(fā)現(xiàn),真核基因的5‵-3‵-非翻譯序列(UTR)對基因的正常表達是非常必要的,該區(qū)段的缺失常會導致mRNA的穩(wěn)定性和翻譯水平顯著下降。例如,在煙草花葉病毒(TMV)的126kDa蛋白基因翻譯起始位點上游,有一個由68bp核苷酸組成的Ω元件,這一元件為核糖體提供了新的結(jié)合位點,能使Gus基因的翻譯活性提高數(shù)十倍。目前已有許多載體中外源基因的5‵-端添加了Ω翻譯增強序列。Ingelbrecht等曾對多種基因的 3‵-端序列進行過研究,發(fā)現(xiàn)章魚堿合成酶基因的3‵-端序列能使NPTII基因的瞬間表達提高20倍以上。另外,不同基因的3‵-端序列增進基因表達的效率有所不同,例如,rbcS3‵-端序列對基因表達的促進作用比查爾酮合酶基因的3‵-端序列高60倍。
2.2 優(yōu)化起始密碼周邊序列
雖然起始密碼子在生物界是通用的,然而,從不同生物來源的基因各有其特殊的起始密碼周邊序列。例如,植物起始密碼子周邊序列的典型特征是AACCAUGC,動物起始密碼子周邊序列為CACCAUG,原核生物的則與二者差別較大。Kozak詳細研究過起始密碼子ATG周邊堿基定點突變后對轉(zhuǎn)錄和翻譯所造成的影響,并總結(jié)出在真核生物中,起始密碼子周邊序列為ACCATGG時轉(zhuǎn)錄和翻譯效率最高,特別是-3位的A對翻譯效率非常重要。該序列被后人稱為Kozak序列,并被應用于表達載體的構建中。例如,有一個細菌的幾丁質(zhì)酶基因,原來的起始密碼周邊序列為UUUAUGG,當被修飾為ACCAUGG,其在煙草中的表達水平提高了8倍。因此,利用非植物來源的基因構建表達載體時,應根據(jù)植物起始密碼子周邊序列的特征加以修飾改造。
2.3對基因編碼區(qū)加以改造
如果外源基因是來自于原核生物,由于表達機制的差異,這些基因在植物體內(nèi)往往表達水平很低,例如,來自于蘇云金芽孢桿菌的野生型殺蟲蛋白基因在植物中的表達量非常低,研究發(fā)現(xiàn)這是由于原核基因與植物基因的差異造成了mRNA穩(wěn)定性下降。美國Monsanto公司Perlak等人在不改變毒蛋白氨基酸序列的前提下,對殺蟲蛋白基因進行了改造,選用植物偏愛的密碼子,增加了GC含量,去除原序列下影響mRNA穩(wěn)定的元件,結(jié)果在轉(zhuǎn)基因植株中毒蛋白的表達量增加了30~100倍,獲得了明顯的抗蟲效果。
3 消除位置效應
當外源基因被移人受體植物中之后,它在不同的轉(zhuǎn)基因植株中的表達水平往往有很大差異。這主要是由于外源基因在受體植物的基因組內(nèi)插入位點不同造成的。這就是所謂的"位置效應"。為了消除位置效應,使外源基因都能夠整合在植物基因組的轉(zhuǎn)錄活躍區(qū),在目前的表達載體構建策略中通常會考慮到核基質(zhì)結(jié)合區(qū)以及定點整合技術的應用。
核基質(zhì)結(jié)合區(qū)(matrix association region,MAR)是存在于真核細胞染色質(zhì)中的一段與核基質(zhì)特異結(jié)合的DNA序列。一般認為,MAR序列位于轉(zhuǎn)錄活躍的DNA環(huán)狀結(jié)構哉的邊界,其功能是造成一種分割作用,使每個轉(zhuǎn)錄單元保持相對的獨立性,免受周圍染色質(zhì)的影響。有關研究表明,將MAR置于目的基因的兩側(cè),構建成包含MAR-gene-MAR結(jié)構的植物表達載體,用于遺傳轉(zhuǎn)化,能明顯提高目的基因的表達水平,降低不同轉(zhuǎn)基因植株之間目的基因表達水平的差異,減少位置效應。例如,Allen等人研究了異源MAR(來自酵母)和同源MAR(來自煙草)對Gus基因在煙草中表達的影響,發(fā)現(xiàn)酵母的MAR能使轉(zhuǎn)基因表達水平平均提高12倍,而煙草本身的MAR能使轉(zhuǎn)基因的表達水平平均提高60倍。使用來源于雞溶菌酶基因的MAR也可起到同樣作用。
另一可行的途徑是采用定點整合技術,這一技術的主要原理是,當轉(zhuǎn)化載體含有與寄主染色體同源的DNA片段時,外源基因可以通過同源重組定點整合于染色體的特定部位。實際操作時首先要分離染色體轉(zhuǎn)錄活性區(qū)域的DNA片段,然后構建植物表達載體。在微生物的遺傳操作中,同源重組定點整合已成為一項常規(guī)技術,在動物中外源基因的定點整合已獲得成功,而在植物中除了葉綠體表達載體可實現(xiàn)定點整合以外,細胞核轉(zhuǎn)化中還很少有成功的報道。
4 構建葉綠體表達載體
為了克服細胞核轉(zhuǎn)化中經(jīng)常出現(xiàn)的外源基因表達效率低,位置效應及由于核基因隨花粉擴散而帶來的不安全性等問題,近幾年出現(xiàn)的一種新興的遺傳轉(zhuǎn)化技術--葉綠體轉(zhuǎn)化,正以它的優(yōu)越性和發(fā)展前景日益為人們所認識并受到重視。到目前為止,已在煙草、水稻、擬南芥、馬鈴薯和油菜(侯丙凱等,等發(fā)表)5種植物中相繼實現(xiàn)了葉綠體轉(zhuǎn)化,使得這一轉(zhuǎn)化技術開始成為植物基因工程中新的生長點。
由于目前多種植物的葉綠體基因組全序列已被測定,這就為外源基因通過同源重組機制定點整合進葉綠體基因組奠定了基礎,目前構建的葉綠體表達載體基本上都屬于定點整合載體。構建葉綠體表達載體基本上都屬于定點事例載體。構建葉綠體表達載體時,一般都在外源基因表達盒的兩側(cè)各連接一段葉綠體的DNA序列,稱為同源重組片段或定位片段(Targeting fragment)。當載體被導入葉綠體后,通過這兩個片段與葉綠體基因組上的相同片段發(fā)生同源重組,就可能將外源基因整合到葉綠體基因組的特定位點。在以作物改良為目的的葉綠體轉(zhuǎn)化中,要求同源重組發(fā)生以后,外源基因的插入既不引起葉綠體基因原有序列丟失,又不致于破壞插入點處原有基因的功能。為滿足這一要求,已有的工作都選用了相鄰的兩個基因作為同源重組片段,例如rbcL/accD,16StrnV/rpsl2rps7,psbA/trnK,rps7/ndhB。當同源重組發(fā)生以后,外源基因定點插入在兩個相鄰基因的間隔區(qū),保證了原有基因的功能不受影響。最近,Daniel等利用煙草葉綠體基因trnA和trnI作為同源重組片段,構建了一種通用載體(universal vector)。由于trnA和trnI的DNA序列在高等植物中是高度保守的,作者認為這種載體可用于多種不同植物的葉綠體轉(zhuǎn)化。如果這種載體的通用性得到證實,那么這項工作無疑為構建方便而實用的新型葉綠體表達載體提供了一個好的思路。
由于葉綠體基因組的高拷貝性,定點整合進葉綠體基因組的外源基因往往會得到高效率表達,例如McBride等人首次將Bt CryIA(c)毒素基因轉(zhuǎn)入煙草葉綠體,Bt毒素蛋白的表達量高達葉子總蛋白的3%~5%,而通常的核轉(zhuǎn)化技術只能達到0.001%~0.6%。最近,Kota等將Bt Cry2Aa2蛋白基因轉(zhuǎn)入煙草轉(zhuǎn)入煙草葉綠體,也發(fā)現(xiàn)毒蛋白在煙草葉子中的表達量很高,占可溶性蛋白的2%~3%,比細胞核轉(zhuǎn)化高出20~30倍,轉(zhuǎn)基因煙草不僅能抗敏感昆蟲,而且能夠百分之百地殺死那些產(chǎn)生了高抗性的昆蟲。Staub等最近報道,將人的生長激素基因轉(zhuǎn)入煙草葉綠體,其表達量竟高達葉片總蛋白的7%,比細胞核轉(zhuǎn)化高出300倍。這些實驗充分說明,葉綠體表達載體的構建和轉(zhuǎn)化,是實現(xiàn)外源基因高效表達的重要途徑之一。
5 定位信號的應用
上述幾種載體優(yōu)化策略主要目的是提高外源基因的轉(zhuǎn)錄和翻譯效率,然而,高水平表達的外源蛋白能否在植物細胞內(nèi)穩(wěn)定存在以及積累量的多少是植物遺傳轉(zhuǎn)化中需要考慮的另一重要問題。
近幾年的研究發(fā)現(xiàn),如果某些外源基因連接上適當?shù)亩ㄎ恍盘栃蛄,使外源蛋白產(chǎn)生后定向運輸?shù)郊毎麅?nèi)的特定部位,例如:葉綠體、內(nèi)質(zhì)網(wǎng)、液泡等,則可明顯提高外源蛋白的穩(wěn)定性和累積量。這是因為內(nèi)質(zhì)網(wǎng)等特定區(qū)域為某些外源蛋白提供了一個相對穩(wěn)定的內(nèi)環(huán)境,有效防止了外源蛋白的降解。例如,Wong等將擬南芥rbcS亞基的轉(zhuǎn)運肽序列連接于殺蟲蛋白基因之前,發(fā)現(xiàn)殺蟲蛋白能夠特異性地積累在轉(zhuǎn)基因煙草的葉綠體內(nèi),外源蛋白總的積累量比對照提高了10~20倍。最近,葉梁、宋艷茹等也將rbcS亞基的轉(zhuǎn)運肽序列連接于PHB合成相關基因之前,試圖使基因表達產(chǎn)物在轉(zhuǎn)基因油菜種子的質(zhì)體中積累,從而提高外源蛋白含量。另外,Wandelt等和Schouten等將內(nèi)質(zhì)網(wǎng)定位序列(四肽KDEL的編碼序列)與外源蛋白基因相連接,發(fā)現(xiàn)外源蛋白在轉(zhuǎn)基因植物中的含量有了顯著提高。顯然,定位信號對于促進蛋白質(zhì)積累有積極作用,但同一種定位信號是否適用于所有的蛋白還有待于進一步確定。
6 內(nèi)含子在增強基因表達方面的應用
內(nèi)含子增強基因表達的作用最初是由Callis等在轉(zhuǎn)基因玉米中發(fā)現(xiàn)的,玉米乙醇脫氫酶基因(Adhl)的第一個內(nèi)含子(intron 1)對外源基因表達有明顯增強作用,該基因的其他內(nèi)含子(例如intron8,intron9)也有一定的增強作用。后來,Vasil等也發(fā)現(xiàn)玉米的果糖合成酶基因的第一個內(nèi)含子能使CAT表達水平提高10倍。水稻肌動蛋白基因的第三個內(nèi)含子也能使報道基因的表達水平提高2~6倍。至今對內(nèi)含子增強基因表達的機制不不清楚,但一般認為可能是內(nèi)含子的存在增強了mRNA的加工效率和mRNA穩(wěn)定性。Tanaka等人的多項研究表明,內(nèi)含子對基因表達的增強作用主要發(fā)生在單子葉植物,在雙子葉植物中不明顯。
由于內(nèi)含子對基因表達有增強作用,Mcelroy等在構建單子葉植物表達載體時,特意將水稻的肌動蛋白基因的第一個內(nèi)含子保留在該基因啟動子的下游。同樣,Christensen等在構建載體時將玉米Ubiquitin基因的第一個內(nèi)含子置于啟動子下游,以增強外源基因在單子葉植物中的表達。然而,有研究指出,特定內(nèi)含子對基因表達的促進作用取決于啟動子強度、細胞類型、目的基因序列等多種因素,甚至有時會取決于內(nèi)含子在載體上的位置。例如,玉米Adhl基因的內(nèi)含子9置于Gus基因的5‵端,在CaMV35S啟動子調(diào)控下,Gus基因的表達未見增強;當把內(nèi)含子置于Gus基因3端,在同樣的啟動子控制下,Gus基因的表達水平卻增加了大約3倍。由此可見,內(nèi)含子對基因表達的作用機制可能是很復雜的,如何利用內(nèi)含子構建高效植物表達載體,目前還缺乏一個固定的模式,值得進一步探討。
7 多基因策略
迄今為止,多數(shù)的遺傳轉(zhuǎn)化研究都是將單一的外源基因轉(zhuǎn)入受體植物。但有時由于單基因表達強度不夠或作用機制單一,尚不能獲得理想的轉(zhuǎn)基因植物。如果把兩個或兩個以上的能起協(xié)同作用的基因同時轉(zhuǎn)入植物,將會獲得比單基因轉(zhuǎn)化更為理想的結(jié)果。這一策略在培育抗病、抗蟲等抗逆性轉(zhuǎn)基因植物方面已得到應用。例如,根據(jù)抗蟲基因的抗蟲譜及作用機制的不同,可選擇兩個功能互補的基因進行載體構建,并通過一定方式將兩個抗蟲基因同時轉(zhuǎn)入一個植物中去。王偉等將外源凝集素基因和蛋白酶抑制劑基因同時轉(zhuǎn)入棉花,得到了含雙價抗蟲基因的轉(zhuǎn)化植株。Barton等將Bt殺蟲蛋白基因和蝎毒素基因同時轉(zhuǎn)入煙草,其抗蟲性和防止害蟲產(chǎn)生抗性的能力大為提高(專利)。在抗病方面,本實驗室藍海燕等構建了包含β-1,3-葡聚糖酶基因及幾丁質(zhì)酶基因的雙價植物表達載體,并將其導入油菜和棉花,結(jié)果表明,轉(zhuǎn)基因植株均產(chǎn)生了明顯的抗病性。最近,馮道榮、李寶健等將2~3個抗真菌病基因和hpt基因連在一個載體上,兩個抗蟲基因與bar基因連在另一個載體上,用基因槍將它們共同導入水稻植株中,結(jié)果表明,70%的R。代植株含有導入的全部外源基因(6~7個),且導入的多個外源基因趨向于整合在基因組的一個或兩個位點。
一般常規(guī)的轉(zhuǎn)化,尚不能將大于25kb的外源DNA片段導入植物細胞。而一些功能相關的基因,比如植物中的數(shù)量性狀基因、抗病基因等,大多成"基因簇"的形式存在。如果將某些大于100kb的大片段DNA,如植物染色體中自然存在的基因簇或并不相連鎖的一系列外源基因?qū)胫参锘蚪M的同一位點,那么將有可能出現(xiàn)由多基因控制的優(yōu)良性狀或產(chǎn)生廣譜的抗蟲性、抗病性等,還可以賦予受體細胞一種全新的代謝途徑,產(chǎn)生新的生物分子。不僅如此,大片段基因群或基因簇的同步插入還可以在一定程度上克服轉(zhuǎn)基因帶來的位置效應,減少基因沉默等不良現(xiàn)象的發(fā)生。最近,美國的Hamilton和中國的劉耀光分別開發(fā)出了新一代載體系統(tǒng),即具有克隆大片段DNA和借助于農(nóng)桿菌介導直接將其轉(zhuǎn)化植物的BIBAC和TAC。這兩種載體不僅可以加速基因的圖位克隆,而且對于實現(xiàn)多基因控制的品種改良也會有潛在的應用價值。目前,關于BIBAC和TAC載體在多基因轉(zhuǎn)化方面的應用研究還剛剛開始。
8 篩選標記基因的利用和刪除
篩選標記基因是指在遺傳轉(zhuǎn)化中能夠使轉(zhuǎn)化細胞(或個體)從眾多的非轉(zhuǎn)化細胞中篩選出來的標記基因。它們通?梢允罐D(zhuǎn)基因細胞產(chǎn)生對某種選擇劑具有抗性的產(chǎn)物,從而使轉(zhuǎn)基因細胞在添加這種選擇的培養(yǎng)基上正常生長,而非轉(zhuǎn)基因細胞由于缺乏抗性則表現(xiàn)出對此選擇劑的敏感性,不能生長、發(fā)育和分化。在構建載體時,篩選標記基因連接在目的基因一旁,兩者各有自己的基因調(diào)控序列(如啟動子、終止子等)。目前常用的篩選標記基因主要有兩大類:抗生素抗性酶基因和除草劑抗性酶基因。前者可產(chǎn)生對某種抗生素的抗性,后者可產(chǎn)生對除草劑的抗性。使用最多的抗生素抗性酶基因包括NPTII基因(產(chǎn)生新霉素磷酸轉(zhuǎn)移酶,抗卡那霉素)、HPT基因(產(chǎn)生潮霉素磷酸轉(zhuǎn)移酶,抗潮霉素)和Gent基因(抗慶大霉素)等。常用的抗除草劑基因包括EPSP基因(產(chǎn)生5-烯醇式丙酮酸莽草酸-3-磷酸合酶,抗草甘磷)、GOX基因(產(chǎn)生草甘膦氧化酶、降解草甘膦)、bar基因(產(chǎn)生PPT乙酰轉(zhuǎn)移酶,抗Bialaphos或glufosinate)等。
近幾年來,轉(zhuǎn)基因植物中篩選標記基因的生物安全性已引起全球關注。例如,人們擔心轉(zhuǎn)基因植物的抗生素抗性標記基因轉(zhuǎn)移進入人或動物的病原菌中,從而引起這些病原菌對抗生素的抗性,使抗生素失去效力。另外,轉(zhuǎn)基因植物通過傳粉將某些基因轉(zhuǎn)移進野生近源雜草已有很多報道,人們擔心轉(zhuǎn)基因植物的抗除草劑基因轉(zhuǎn)入雜草,會造成某些雜草難以人為控制。為了避免轉(zhuǎn)基因植物所帶來的不安全因素,近年來在篩選標記的使用方面已有了一些新的改進。(1)利用生物合成基因作為篩選標記基因,提高安全性。例如,某些支鏈氨基酸(賴氨酸、蘇氨酸、甲硫氨酸、異亮氨酸)的合成都要經(jīng)過天冬氨酸合成途徑。其中賴氨酸是由天科氨酸激和二羥基吡啶酸合酶催化合成的,兩種酶都受賴氨酸的反饋抑制。細菌來源的這兩種酶由于對賴氨酸不敏感,因此可作為植物轉(zhuǎn)化的篩選標記,在含賴氨酸的培養(yǎng)基中轉(zhuǎn)基因植株能夠存活,而非轉(zhuǎn)基因植株則因死亡而被淘汰。(2)篩選標記的去除?股乜剐曰蚝统輨┛剐曰螂m然有利于轉(zhuǎn)化體的篩選,但它們對植物的生長并非必要。如果能剔除轉(zhuǎn)基因植株的篩選標記基因,將是提高安全性的最好方法。例如,Dale等利用Cre/lox重組系統(tǒng),先將一種篩選標記插入lox位點,再與目的基因相連,轉(zhuǎn)入植物細胞。在第二輪轉(zhuǎn)化時,將另一種篩選標記與Cre序列連接后再轉(zhuǎn)入已轉(zhuǎn)化的細胞,在Cre重組酶的作用下,第一種篩選標記可被刪除。挑取已失去第一篩選標記的植株,待開花結(jié)籽后,從后代分離群體中挑選沒有第二種篩選標記的植株,即為已完全剔除了篩選標記的轉(zhuǎn)基因植株。除了Cre/lox重組系統(tǒng)以外,利用FLP/FRT重組系統(tǒng)也可將篩選標記基因去除。另外,將篩選標記基因和目的基因分別構建在不同的載體上,通過共轉(zhuǎn)化,然后從后代的分離群體中挑選,也可獲得無篩選標記的轉(zhuǎn)基因植株。(3)篩選標記基因的失活。為了減少抗性標記基因產(chǎn)物帶來的不安全性,還有些研究者采用反義RNA基因,核酸裂解酶(ribozymes)基因或采用抗體基因等策略使篩選標記基因或基因拉物失活。但這些方法的缺點是沒有去除篩選標記基因,仍存在基因傳播的可能性。
植物基因工程經(jīng)歷了二十多年的發(fā)展歷程,雖然取得了令世人矚目的成績,但仍有許多問題一直困擾著這個領域的研究者。突出的問題表現(xiàn)在外源基因往往表達效率不高,難以得到理想的轉(zhuǎn)基因植物(作物),轉(zhuǎn)基因作物的安全性不好。這些問題不僅成為植物基因工程發(fā)展的限制因素,而且也是近幾年在西歐等國家對轉(zhuǎn)基因作物有較大爭議甚至產(chǎn)生排斥反應的直接原因之一。本文簡要介紹了國內(nèi)外在構建植物表達載體方面的一些新進展,這些策略的最終目的都是為了更好地增強外源基因的表達水平,提高生物工程體的安全性。希望它能為該領域的研究人員引發(fā)一些思考,促進我國植物基因工程的進一步發(fā)展。
1 啟動子的選用和改造
外源基因表達量不足往往是得不到理想的轉(zhuǎn)基因植物的重要原因。由于啟動子在決定基因表達方面起關鍵作用,因此,選擇合適的植物啟動子和改進其活性是增強外源基因表達首先要考慮的問題。
目前在植物表達載體中廣泛應用的啟動子是組成型啟動子,例如,絕大多數(shù)雙子葉轉(zhuǎn)基因植物均使用CaMV35S啟動子,單子葉轉(zhuǎn)基因植物主要使用來自玉米的Ubiquitin啟動子和來自水稻的Actinl啟動子。在這些組成型表達啟動子的控制下,外源基因在轉(zhuǎn)基因植物的所有部位和所有的發(fā)育階段都會表達。然而,外源基因在受體植物內(nèi)持續(xù)、高效的表達不但造成浪費,往往還會引起植物的形態(tài)發(fā)生改變,影響植物的生長發(fā)育。為了使外源基因在植物體內(nèi)有效發(fā)揮作用,同時又可減少對植物的不利影響,目前人們對特異表達啟動子的研究和應用越來越重視。已發(fā)現(xiàn)的特異性啟動子主要包括器官特異性啟動子和誘導特異性啟動子。例如,種子特異性啟動子、果實特異性啟動子、葉肉細胞特異性啟動子、根特異性啟動子、損傷誘導特異性啟動子、化學誘導特異性啟動子、光誘導特異性啟動子、熱激誘導特異性啟動子等。這些特異性啟動子的克隆和應用為在植物中特異性地表達外源基因奠定了基礎。例如,瑞士CIBA-GEIGY公司使用PR-IA啟動子控制轉(zhuǎn)基因煙草中Bt毒蛋白基因的表達,由于該啟動子可受水楊酸及其衍生物誘導,通過噴酒廉價、無公害的化學物質(zhì),誘導抗蟲基因在蟲害重發(fā)生季節(jié)表達,顯然是一個十分有效的途徑。
在植物轉(zhuǎn)基因研究中,使用天然的啟動子往往不能取得令人滿意的結(jié)果,尤其是在進行特異表達和誘導表達時,表達水平大多不夠理想。對現(xiàn)有啟動子進行改造,構建復合式啟動子將是十分重要的途徑。例如,Ni等人將章魚堿合成酶基因啟動子的轉(zhuǎn)錄激活區(qū)與甘露堿合成酶基因啟動子構成了復合啟動子,GUS表達結(jié)果表示:改造后的啟動子活性比35S啟動子明顯提高。吳瑞等人將操作誘導型的PI-II基因啟動子與水稻Actinl基因內(nèi)含子1進行組合,新型啟動子的表達活性提高了近10倍(專利)。在植物基因工程研究中,這些人工組建的啟動子發(fā)揮了重要作用。
2 增強翻譯效率
為了增強外源基因的翻譯效率,構建載體時一般要對基因進行修飾,主要考慮三方面內(nèi)容:
2.1添加5‵-3‵-非翻譯序列
許多實驗已經(jīng)發(fā)現(xiàn),真核基因的5‵-3‵-非翻譯序列(UTR)對基因的正常表達是非常必要的,該區(qū)段的缺失常會導致mRNA的穩(wěn)定性和翻譯水平顯著下降。例如,在煙草花葉病毒(TMV)的126kDa蛋白基因翻譯起始位點上游,有一個由68bp核苷酸組成的Ω元件,這一元件為核糖體提供了新的結(jié)合位點,能使Gus基因的翻譯活性提高數(shù)十倍。目前已有許多載體中外源基因的5‵-端添加了Ω翻譯增強序列。Ingelbrecht等曾對多種基因的 3‵-端序列進行過研究,發(fā)現(xiàn)章魚堿合成酶基因的3‵-端序列能使NPTII基因的瞬間表達提高20倍以上。另外,不同基因的3‵-端序列增進基因表達的效率有所不同,例如,rbcS3‵-端序列對基因表達的促進作用比查爾酮合酶基因的3‵-端序列高60倍。
2.2 優(yōu)化起始密碼周邊序列
雖然起始密碼子在生物界是通用的,然而,從不同生物來源的基因各有其特殊的起始密碼周邊序列。例如,植物起始密碼子周邊序列的典型特征是AACCAUGC,動物起始密碼子周邊序列為CACCAUG,原核生物的則與二者差別較大。Kozak詳細研究過起始密碼子ATG周邊堿基定點突變后對轉(zhuǎn)錄和翻譯所造成的影響,并總結(jié)出在真核生物中,起始密碼子周邊序列為ACCATGG時轉(zhuǎn)錄和翻譯效率最高,特別是-3位的A對翻譯效率非常重要。該序列被后人稱為Kozak序列,并被應用于表達載體的構建中。例如,有一個細菌的幾丁質(zhì)酶基因,原來的起始密碼周邊序列為UUUAUGG,當被修飾為ACCAUGG,其在煙草中的表達水平提高了8倍。因此,利用非植物來源的基因構建表達載體時,應根據(jù)植物起始密碼子周邊序列的特征加以修飾改造。
2.3對基因編碼區(qū)加以改造
如果外源基因是來自于原核生物,由于表達機制的差異,這些基因在植物體內(nèi)往往表達水平很低,例如,來自于蘇云金芽孢桿菌的野生型殺蟲蛋白基因在植物中的表達量非常低,研究發(fā)現(xiàn)這是由于原核基因與植物基因的差異造成了mRNA穩(wěn)定性下降。美國Monsanto公司Perlak等人在不改變毒蛋白氨基酸序列的前提下,對殺蟲蛋白基因進行了改造,選用植物偏愛的密碼子,增加了GC含量,去除原序列下影響mRNA穩(wěn)定的元件,結(jié)果在轉(zhuǎn)基因植株中毒蛋白的表達量增加了30~100倍,獲得了明顯的抗蟲效果。
3 消除位置效應
當外源基因被移人受體植物中之后,它在不同的轉(zhuǎn)基因植株中的表達水平往往有很大差異。這主要是由于外源基因在受體植物的基因組內(nèi)插入位點不同造成的。這就是所謂的"位置效應"。為了消除位置效應,使外源基因都能夠整合在植物基因組的轉(zhuǎn)錄活躍區(qū),在目前的表達載體構建策略中通常會考慮到核基質(zhì)結(jié)合區(qū)以及定點整合技術的應用。
核基質(zhì)結(jié)合區(qū)(matrix association region,MAR)是存在于真核細胞染色質(zhì)中的一段與核基質(zhì)特異結(jié)合的DNA序列。一般認為,MAR序列位于轉(zhuǎn)錄活躍的DNA環(huán)狀結(jié)構哉的邊界,其功能是造成一種分割作用,使每個轉(zhuǎn)錄單元保持相對的獨立性,免受周圍染色質(zhì)的影響。有關研究表明,將MAR置于目的基因的兩側(cè),構建成包含MAR-gene-MAR結(jié)構的植物表達載體,用于遺傳轉(zhuǎn)化,能明顯提高目的基因的表達水平,降低不同轉(zhuǎn)基因植株之間目的基因表達水平的差異,減少位置效應。例如,Allen等人研究了異源MAR(來自酵母)和同源MAR(來自煙草)對Gus基因在煙草中表達的影響,發(fā)現(xiàn)酵母的MAR能使轉(zhuǎn)基因表達水平平均提高12倍,而煙草本身的MAR能使轉(zhuǎn)基因的表達水平平均提高60倍。使用來源于雞溶菌酶基因的MAR也可起到同樣作用。
另一可行的途徑是采用定點整合技術,這一技術的主要原理是,當轉(zhuǎn)化載體含有與寄主染色體同源的DNA片段時,外源基因可以通過同源重組定點整合于染色體的特定部位。實際操作時首先要分離染色體轉(zhuǎn)錄活性區(qū)域的DNA片段,然后構建植物表達載體。在微生物的遺傳操作中,同源重組定點整合已成為一項常規(guī)技術,在動物中外源基因的定點整合已獲得成功,而在植物中除了葉綠體表達載體可實現(xiàn)定點整合以外,細胞核轉(zhuǎn)化中還很少有成功的報道。
4 構建葉綠體表達載體
為了克服細胞核轉(zhuǎn)化中經(jīng)常出現(xiàn)的外源基因表達效率低,位置效應及由于核基因隨花粉擴散而帶來的不安全性等問題,近幾年出現(xiàn)的一種新興的遺傳轉(zhuǎn)化技術--葉綠體轉(zhuǎn)化,正以它的優(yōu)越性和發(fā)展前景日益為人們所認識并受到重視。到目前為止,已在煙草、水稻、擬南芥、馬鈴薯和油菜(侯丙凱等,等發(fā)表)5種植物中相繼實現(xiàn)了葉綠體轉(zhuǎn)化,使得這一轉(zhuǎn)化技術開始成為植物基因工程中新的生長點。
由于目前多種植物的葉綠體基因組全序列已被測定,這就為外源基因通過同源重組機制定點整合進葉綠體基因組奠定了基礎,目前構建的葉綠體表達載體基本上都屬于定點整合載體。構建葉綠體表達載體基本上都屬于定點事例載體。構建葉綠體表達載體時,一般都在外源基因表達盒的兩側(cè)各連接一段葉綠體的DNA序列,稱為同源重組片段或定位片段(Targeting fragment)。當載體被導入葉綠體后,通過這兩個片段與葉綠體基因組上的相同片段發(fā)生同源重組,就可能將外源基因整合到葉綠體基因組的特定位點。在以作物改良為目的的葉綠體轉(zhuǎn)化中,要求同源重組發(fā)生以后,外源基因的插入既不引起葉綠體基因原有序列丟失,又不致于破壞插入點處原有基因的功能。為滿足這一要求,已有的工作都選用了相鄰的兩個基因作為同源重組片段,例如rbcL/accD,16StrnV/rpsl2rps7,psbA/trnK,rps7/ndhB。當同源重組發(fā)生以后,外源基因定點插入在兩個相鄰基因的間隔區(qū),保證了原有基因的功能不受影響。最近,Daniel等利用煙草葉綠體基因trnA和trnI作為同源重組片段,構建了一種通用載體(universal vector)。由于trnA和trnI的DNA序列在高等植物中是高度保守的,作者認為這種載體可用于多種不同植物的葉綠體轉(zhuǎn)化。如果這種載體的通用性得到證實,那么這項工作無疑為構建方便而實用的新型葉綠體表達載體提供了一個好的思路。
由于葉綠體基因組的高拷貝性,定點整合進葉綠體基因組的外源基因往往會得到高效率表達,例如McBride等人首次將Bt CryIA(c)毒素基因轉(zhuǎn)入煙草葉綠體,Bt毒素蛋白的表達量高達葉子總蛋白的3%~5%,而通常的核轉(zhuǎn)化技術只能達到0.001%~0.6%。最近,Kota等將Bt Cry2Aa2蛋白基因轉(zhuǎn)入煙草轉(zhuǎn)入煙草葉綠體,也發(fā)現(xiàn)毒蛋白在煙草葉子中的表達量很高,占可溶性蛋白的2%~3%,比細胞核轉(zhuǎn)化高出20~30倍,轉(zhuǎn)基因煙草不僅能抗敏感昆蟲,而且能夠百分之百地殺死那些產(chǎn)生了高抗性的昆蟲。Staub等最近報道,將人的生長激素基因轉(zhuǎn)入煙草葉綠體,其表達量竟高達葉片總蛋白的7%,比細胞核轉(zhuǎn)化高出300倍。這些實驗充分說明,葉綠體表達載體的構建和轉(zhuǎn)化,是實現(xiàn)外源基因高效表達的重要途徑之一。
5 定位信號的應用
上述幾種載體優(yōu)化策略主要目的是提高外源基因的轉(zhuǎn)錄和翻譯效率,然而,高水平表達的外源蛋白能否在植物細胞內(nèi)穩(wěn)定存在以及積累量的多少是植物遺傳轉(zhuǎn)化中需要考慮的另一重要問題。
近幾年的研究發(fā)現(xiàn),如果某些外源基因連接上適當?shù)亩ㄎ恍盘栃蛄,使外源蛋白產(chǎn)生后定向運輸?shù)郊毎麅?nèi)的特定部位,例如:葉綠體、內(nèi)質(zhì)網(wǎng)、液泡等,則可明顯提高外源蛋白的穩(wěn)定性和累積量。這是因為內(nèi)質(zhì)網(wǎng)等特定區(qū)域為某些外源蛋白提供了一個相對穩(wěn)定的內(nèi)環(huán)境,有效防止了外源蛋白的降解。例如,Wong等將擬南芥rbcS亞基的轉(zhuǎn)運肽序列連接于殺蟲蛋白基因之前,發(fā)現(xiàn)殺蟲蛋白能夠特異性地積累在轉(zhuǎn)基因煙草的葉綠體內(nèi),外源蛋白總的積累量比對照提高了10~20倍。最近,葉梁、宋艷茹等也將rbcS亞基的轉(zhuǎn)運肽序列連接于PHB合成相關基因之前,試圖使基因表達產(chǎn)物在轉(zhuǎn)基因油菜種子的質(zhì)體中積累,從而提高外源蛋白含量。另外,Wandelt等和Schouten等將內(nèi)質(zhì)網(wǎng)定位序列(四肽KDEL的編碼序列)與外源蛋白基因相連接,發(fā)現(xiàn)外源蛋白在轉(zhuǎn)基因植物中的含量有了顯著提高。顯然,定位信號對于促進蛋白質(zhì)積累有積極作用,但同一種定位信號是否適用于所有的蛋白還有待于進一步確定。
6 內(nèi)含子在增強基因表達方面的應用
內(nèi)含子增強基因表達的作用最初是由Callis等在轉(zhuǎn)基因玉米中發(fā)現(xiàn)的,玉米乙醇脫氫酶基因(Adhl)的第一個內(nèi)含子(intron 1)對外源基因表達有明顯增強作用,該基因的其他內(nèi)含子(例如intron8,intron9)也有一定的增強作用。后來,Vasil等也發(fā)現(xiàn)玉米的果糖合成酶基因的第一個內(nèi)含子能使CAT表達水平提高10倍。水稻肌動蛋白基因的第三個內(nèi)含子也能使報道基因的表達水平提高2~6倍。至今對內(nèi)含子增強基因表達的機制不不清楚,但一般認為可能是內(nèi)含子的存在增強了mRNA的加工效率和mRNA穩(wěn)定性。Tanaka等人的多項研究表明,內(nèi)含子對基因表達的增強作用主要發(fā)生在單子葉植物,在雙子葉植物中不明顯。
由于內(nèi)含子對基因表達有增強作用,Mcelroy等在構建單子葉植物表達載體時,特意將水稻的肌動蛋白基因的第一個內(nèi)含子保留在該基因啟動子的下游。同樣,Christensen等在構建載體時將玉米Ubiquitin基因的第一個內(nèi)含子置于啟動子下游,以增強外源基因在單子葉植物中的表達。然而,有研究指出,特定內(nèi)含子對基因表達的促進作用取決于啟動子強度、細胞類型、目的基因序列等多種因素,甚至有時會取決于內(nèi)含子在載體上的位置。例如,玉米Adhl基因的內(nèi)含子9置于Gus基因的5‵端,在CaMV35S啟動子調(diào)控下,Gus基因的表達未見增強;當把內(nèi)含子置于Gus基因3端,在同樣的啟動子控制下,Gus基因的表達水平卻增加了大約3倍。由此可見,內(nèi)含子對基因表達的作用機制可能是很復雜的,如何利用內(nèi)含子構建高效植物表達載體,目前還缺乏一個固定的模式,值得進一步探討。
7 多基因策略
迄今為止,多數(shù)的遺傳轉(zhuǎn)化研究都是將單一的外源基因轉(zhuǎn)入受體植物。但有時由于單基因表達強度不夠或作用機制單一,尚不能獲得理想的轉(zhuǎn)基因植物。如果把兩個或兩個以上的能起協(xié)同作用的基因同時轉(zhuǎn)入植物,將會獲得比單基因轉(zhuǎn)化更為理想的結(jié)果。這一策略在培育抗病、抗蟲等抗逆性轉(zhuǎn)基因植物方面已得到應用。例如,根據(jù)抗蟲基因的抗蟲譜及作用機制的不同,可選擇兩個功能互補的基因進行載體構建,并通過一定方式將兩個抗蟲基因同時轉(zhuǎn)入一個植物中去。王偉等將外源凝集素基因和蛋白酶抑制劑基因同時轉(zhuǎn)入棉花,得到了含雙價抗蟲基因的轉(zhuǎn)化植株。Barton等將Bt殺蟲蛋白基因和蝎毒素基因同時轉(zhuǎn)入煙草,其抗蟲性和防止害蟲產(chǎn)生抗性的能力大為提高(專利)。在抗病方面,本實驗室藍海燕等構建了包含β-1,3-葡聚糖酶基因及幾丁質(zhì)酶基因的雙價植物表達載體,并將其導入油菜和棉花,結(jié)果表明,轉(zhuǎn)基因植株均產(chǎn)生了明顯的抗病性。最近,馮道榮、李寶健等將2~3個抗真菌病基因和hpt基因連在一個載體上,兩個抗蟲基因與bar基因連在另一個載體上,用基因槍將它們共同導入水稻植株中,結(jié)果表明,70%的R。代植株含有導入的全部外源基因(6~7個),且導入的多個外源基因趨向于整合在基因組的一個或兩個位點。
一般常規(guī)的轉(zhuǎn)化,尚不能將大于25kb的外源DNA片段導入植物細胞。而一些功能相關的基因,比如植物中的數(shù)量性狀基因、抗病基因等,大多成"基因簇"的形式存在。如果將某些大于100kb的大片段DNA,如植物染色體中自然存在的基因簇或并不相連鎖的一系列外源基因?qū)胫参锘蚪M的同一位點,那么將有可能出現(xiàn)由多基因控制的優(yōu)良性狀或產(chǎn)生廣譜的抗蟲性、抗病性等,還可以賦予受體細胞一種全新的代謝途徑,產(chǎn)生新的生物分子。不僅如此,大片段基因群或基因簇的同步插入還可以在一定程度上克服轉(zhuǎn)基因帶來的位置效應,減少基因沉默等不良現(xiàn)象的發(fā)生。最近,美國的Hamilton和中國的劉耀光分別開發(fā)出了新一代載體系統(tǒng),即具有克隆大片段DNA和借助于農(nóng)桿菌介導直接將其轉(zhuǎn)化植物的BIBAC和TAC。這兩種載體不僅可以加速基因的圖位克隆,而且對于實現(xiàn)多基因控制的品種改良也會有潛在的應用價值。目前,關于BIBAC和TAC載體在多基因轉(zhuǎn)化方面的應用研究還剛剛開始。
8 篩選標記基因的利用和刪除
篩選標記基因是指在遺傳轉(zhuǎn)化中能夠使轉(zhuǎn)化細胞(或個體)從眾多的非轉(zhuǎn)化細胞中篩選出來的標記基因。它們通?梢允罐D(zhuǎn)基因細胞產(chǎn)生對某種選擇劑具有抗性的產(chǎn)物,從而使轉(zhuǎn)基因細胞在添加這種選擇的培養(yǎng)基上正常生長,而非轉(zhuǎn)基因細胞由于缺乏抗性則表現(xiàn)出對此選擇劑的敏感性,不能生長、發(fā)育和分化。在構建載體時,篩選標記基因連接在目的基因一旁,兩者各有自己的基因調(diào)控序列(如啟動子、終止子等)。目前常用的篩選標記基因主要有兩大類:抗生素抗性酶基因和除草劑抗性酶基因。前者可產(chǎn)生對某種抗生素的抗性,后者可產(chǎn)生對除草劑的抗性。使用最多的抗生素抗性酶基因包括NPTII基因(產(chǎn)生新霉素磷酸轉(zhuǎn)移酶,抗卡那霉素)、HPT基因(產(chǎn)生潮霉素磷酸轉(zhuǎn)移酶,抗潮霉素)和Gent基因(抗慶大霉素)等。常用的抗除草劑基因包括EPSP基因(產(chǎn)生5-烯醇式丙酮酸莽草酸-3-磷酸合酶,抗草甘磷)、GOX基因(產(chǎn)生草甘膦氧化酶、降解草甘膦)、bar基因(產(chǎn)生PPT乙酰轉(zhuǎn)移酶,抗Bialaphos或glufosinate)等。
近幾年來,轉(zhuǎn)基因植物中篩選標記基因的生物安全性已引起全球關注。例如,人們擔心轉(zhuǎn)基因植物的抗生素抗性標記基因轉(zhuǎn)移進入人或動物的病原菌中,從而引起這些病原菌對抗生素的抗性,使抗生素失去效力。另外,轉(zhuǎn)基因植物通過傳粉將某些基因轉(zhuǎn)移進野生近源雜草已有很多報道,人們擔心轉(zhuǎn)基因植物的抗除草劑基因轉(zhuǎn)入雜草,會造成某些雜草難以人為控制。為了避免轉(zhuǎn)基因植物所帶來的不安全因素,近年來在篩選標記的使用方面已有了一些新的改進。(1)利用生物合成基因作為篩選標記基因,提高安全性。例如,某些支鏈氨基酸(賴氨酸、蘇氨酸、甲硫氨酸、異亮氨酸)的合成都要經(jīng)過天冬氨酸合成途徑。其中賴氨酸是由天科氨酸激和二羥基吡啶酸合酶催化合成的,兩種酶都受賴氨酸的反饋抑制。細菌來源的這兩種酶由于對賴氨酸不敏感,因此可作為植物轉(zhuǎn)化的篩選標記,在含賴氨酸的培養(yǎng)基中轉(zhuǎn)基因植株能夠存活,而非轉(zhuǎn)基因植株則因死亡而被淘汰。(2)篩選標記的去除?股乜剐曰蚝统輨┛剐曰螂m然有利于轉(zhuǎn)化體的篩選,但它們對植物的生長并非必要。如果能剔除轉(zhuǎn)基因植株的篩選標記基因,將是提高安全性的最好方法。例如,Dale等利用Cre/lox重組系統(tǒng),先將一種篩選標記插入lox位點,再與目的基因相連,轉(zhuǎn)入植物細胞。在第二輪轉(zhuǎn)化時,將另一種篩選標記與Cre序列連接后再轉(zhuǎn)入已轉(zhuǎn)化的細胞,在Cre重組酶的作用下,第一種篩選標記可被刪除。挑取已失去第一篩選標記的植株,待開花結(jié)籽后,從后代分離群體中挑選沒有第二種篩選標記的植株,即為已完全剔除了篩選標記的轉(zhuǎn)基因植株。除了Cre/lox重組系統(tǒng)以外,利用FLP/FRT重組系統(tǒng)也可將篩選標記基因去除。另外,將篩選標記基因和目的基因分別構建在不同的載體上,通過共轉(zhuǎn)化,然后從后代的分離群體中挑選,也可獲得無篩選標記的轉(zhuǎn)基因植株。(3)篩選標記基因的失活。為了減少抗性標記基因產(chǎn)物帶來的不安全性,還有些研究者采用反義RNA基因,核酸裂解酶(ribozymes)基因或采用抗體基因等策略使篩選標記基因或基因拉物失活。但這些方法的缺點是沒有去除篩選標記基因,仍存在基因傳播的可能性。
植物基因工程經(jīng)歷了二十多年的發(fā)展歷程,雖然取得了令世人矚目的成績,但仍有許多問題一直困擾著這個領域的研究者。突出的問題表現(xiàn)在外源基因往往表達效率不高,難以得到理想的轉(zhuǎn)基因植物(作物),轉(zhuǎn)基因作物的安全性不好。這些問題不僅成為植物基因工程發(fā)展的限制因素,而且也是近幾年在西歐等國家對轉(zhuǎn)基因作物有較大爭議甚至產(chǎn)生排斥反應的直接原因之一。本文簡要介紹了國內(nèi)外在構建植物表達載體方面的一些新進展,這些策略的最終目的都是為了更好地增強外源基因的表達水平,提高生物工程體的安全性。希望它能為該領域的研究人員引發(fā)一些思考,促進我國植物基因工程的進一步發(fā)展。